36,882 research outputs found

    Tachyon kinks on non BPS D-branes

    Get PDF
    We consider solitonic solutions of the DBI tachyon effective action for a non-BPS brane. When wrapped on a circle, these solutions are regular and have a finite energy. We show that in the decompactified limit, these solitons give Sen's infinitely thin finite energy kink -- interpreted as a BPS brane -- provided that some conditions on the potential hold. In particular, if for large TT the potential is exponential, V=e−TaV = e^{-T^a}, then Sen's solution is only found for a<1a<1. For power-law potentials V=1/TbV = 1/T^b, one must have b>1b>1. If these conditions are not satisfied, we show that the lowest energy configuration is the unstable tachyon vacuum with no kinks. We examine the stability of the solitons and the spectrum of small perturbations.Comment: 16 pages, 2 figure

    Comparative study of spanning cluster distributions in different dimensions

    Full text link
    The probability distributions of the masses of the clusters spanning from top to bottom of a percolating lattice at the percolation threshold are obtained in all dimensions from two to five. The first two cumulants and the exponents for the universal scaling functions are shown to have simple power law variations with the dimensionality. The cases where multiple spanning clusters occur are discussed separately and compared.Comment: 8 pages, latex, 4 eps figures included, to appear in Int. Journal of Modern Physics

    Time and Tachyon

    Get PDF
    Recent analysis suggests that the classical dynamics of a tachyon on an unstable D-brane is described by a scalar Born-Infeld type action with a runaway potential. The classical configurations in this theory at late time are in one to one correspondence with the configuration of a system of non-interacting (incoherent), non-rotating dust. We discuss some aspects of canonical quantization of this field theory coupled to gravity, and explore, following earlier work on this subject, the possibility of using the scalar field (tachyon) as the definition of time in quantum cosmology. At late `time' we can identify a subsector in which the scalar field decouples from gravity and we recover the usual Wheeler - de Witt equation of quantum gravity.Comment: LaTeX file, 24 page

    CRAB Cavity in CERN SPS

    Full text link
    Beam collisions with a crossing angle at the interaction point have been applied in high intensity colliders to reduce the effects of parasitic collisions which induce emittance growth and beam lifetime deterioration. The crossing angle causes the geometrical reduction of the luminosity. Crab cavity can be one of the most promising ways to compensate the crossing angle and to realize effective head-on collisions. Moreover, the crab crossing mitigates the synchro-betatron resonances due to the crossing angle. Crab cavity experiment in SPS is proposed for deciding on a full crab-cavity implementation in LHC. In this paper, we investigate the effects of crab crossing on beam dynamics and its life time with the global scheme.Comment: 3 pp. 1st International Particle Accelerator Conference: IPAC'10, 23-28 May 2010: Kyoto, Japa

    The Schrodinger Wave Functional and Closed String Rolling Tachyon

    Full text link
    In this short note we apply Schrodinger picture description of the minisuperspace approach to the closed string tachyon condensation. We will calculate the rate of produced closed string and we will show that the density of high massive closed string modes reaches the string density in time of order one in string units.Comment: 12 page

    Phase transitions in Ising model on a Euclidean network

    Full text link
    A one dimensional network on which there are long range bonds at lattice distances l>1l>1 with the probability P(l)∝l−ήP(l) \propto l^{-\delta} has been taken under consideration. We investigate the critical behavior of the Ising model on such a network where spins interact with these extra neighbours apart from their nearest neighbours for 0≀Ύ<20 \leq \delta < 2. It is observed that there is a finite temperature phase transition in the entire range. For 0≀Ύ<10 \leq \delta < 1, finite size scaling behaviour of various quantities are consistent with mean field exponents while for 1≀Ύ≀21\leq \delta\leq 2, the exponents depend on ÎŽ\delta. The results are discussed in the context of earlier observations on the topology of the underlying network.Comment: 7 pages, revtex4, 7 figures; to appear in Physical Review E, minor changes mad

    Energy Momentum Tensor and Marginal Deformations in Open String Field Theory

    Get PDF
    Marginal boundary deformations in a two dimensional conformal field theory correspond to a family of classical solutions of the equations of motion of open string field theory. In this paper we develop a systematic method for relating the parameter labelling the marginal boundary deformation in the conformal field theory to the parameter labelling the classical solution in open string field theory. This is done by first constructing the energy-momentum tensor associated with the classical solution in open string field theory using Noether method, and then comparing this to the answer obtained in the conformal field theory by analysing the boundary state. We also use this method to demonstrate that in open string field theory the tachyon lump solution on a circle of radius larger than one has vanishing pressure along the circle direction, as is expected for a codimension one D-brane.Comment: LaTeX file, 25 pages; v2: minor addition

    D-Brane Effective Actions and Particle Production near the Beginning of the Tachyon Condensation

    Full text link
    In this paper we will study the quantum field theory of fluctuation modes around the classical solution that describes tachyon condensation on unstable D-brane.We will calculate the number of particle produced near the beginning of the rolling tachyon process. We will perform this calculation for different tachyon effective actions and we will find that the rate of the particle production strongly depends on the form of the effective action used for the description of the early stage of the tachyon condensation.Comment: 21 page

    Delocalized, non-SUSY pp-branes, tachyon condensation and tachyon matter

    Full text link
    We construct non-supersymmetric pp-brane solutions of type II supergravities in arbitrary dimensions (dd) delocalized in one of the spatial transverse directions. By a Wick rotation we convert these solutions into Euclidean pp-branes delocalized in the transverse time-like direction. The former solutions in d=10d=10 nicely interpolate between the (p+1)(p+1)-dimensional non-BPS D-branes and the pp-dimensional BPS D-branes very similar to the picture of tachyon condensation for the tachyonic kink solution on the non-BPS D-branes. On the other hand the latter solutions interpolate between the (p+1)(p+1)-dimensional non-BPS D-branes and the tachyon matter supergravity configuration very similar to the picture of rolling tachyon on the non-BPS D-branes.Comment: 15 pages, typos correcte
    • 

    corecore